DesignSpace — An Infrastructure for Multi-User/Multi-Tool
Engineering

Andreas Demuth
Institute for Software Systems

Markus
Riedl-Ehrenleitner

Alexander Néhrer
Institute for Software Systems

Engineering Institute for Software Systems Engineering
Johannes Kepler University Engineering Johannes Kepler University

Linz, Austria_ Johannes Kepler University Linz, Austria
andreas.demuth@jku.at Linz, Austria alexander.noehrer@jku.at

markus.riedl@jku.at

Peter Hehenberger
Institute of Mechatronic
Design and Production
Johannes Kepler University
Linz, Austria
peter.hehenberger@jku.at

ABSTRACT

The engineering and maintenance of large (software) systems is
an inherently collaborative process that involves diverse engineer-
ing teams, heterogeneous development artifacts, and different en-
gineering tools. While teams have to collaborate continuously and
their artifacts are often related, the tools they use are nearly al-
ways independent, single-user applications. These tools range from
programming to modeling tools and cover a wide range of engi-
neering disciplines. However, relations among the artifacts across
these tools often remain undocumented and are handled in an ad-
hoc manner. Keeping these artifacts in sync continues to be a key
engineering challenge. In this paper, we present our vision of the
DesignSpace, a novel engineering infrastructure for integrating di-
verse development artifacts and their relations. The DesignSpace
supports distributed collaboration, a wide range of tools and devel-
opment, maintenance , and evolution services including incremen-
tal consistency checking and transformation.

1. INTRODUCTION

The engineering and maintenance of software systems often re-
quires expertise from various disciplines and involves diverse tasks
that range from requirements engineering to HW/SW modeling
to testing and deployment. Most of these tasks are supported by
highly specialized engineering tools of excellent quality that let
engineers produce many kinds of development artifacts quite effi-
ciently. However, it is important to note that most of these engineer-
ing tools are first and foremost single-user applications, focusing
on the tasks of individual engineers and specific kinds of artifacts
(e.g., Eclipse for Java code, ProEngineer for 3D-CAD drawings,
or Matlab for modeling and simulation). While these engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’15 April 13-17, 2015, Salamanca, Spain.

Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695697

Klaus Zeman
Institute of Mechatronic
Design and Production

Johannes Kepler University
Linz, Austria
klaus.zeman@jku.at

Alexander Egyed
Institute for Software Systems
Engineering
Johannes Kepler University

Linz, Austria_
alexander.egyed@jku.at

tools are separate, it is clear that the artifacts created with them be-
long together. For example, the software engineer must understand
the mechanics of a system and must conform to its behavior even
though this behavior is decided by a mechanical engineer. The soft-
ware and hardware thus needs to be in sync and failure to identify
discrepancies will cause the system to fail. We refer to such dis-
crepancies as inconsistencies, which are particularly hard to catch
if they involve artifacts that are modeled in different engineering
tools, possibly involving different engineers and different engineer-
ing domains.

This disconnect between the standalone nature of engineering
tools and the inherently collaborative nature of engineering implies
that engineers need to divert attention from the actual engineering
task to manually ensure consistency across development artifacts
and to manually propagate changes among them. Doing so is rec-
ognized to be error prone as different artifacts might be closely
related in terms of their purpose and semantics, but they are likely
to have different metamodels or languages, and they might even
have different file formats that require different tools for editing.
Consequently, two engineers who are responsible for two different
artifacts might use similar concepts and ideas, but in such differ-
ent languages and tools that neither involved engineer can perform
the necessary changes in a consistent manner. For example, a me-
chanical engineer is able to describe and simulate a dynamic be-
havior in Matlab but does not have the programming skills to re-
flect this behavior in the software system. In reverse, a software
engineer can implement the robot controller that conforms with
the expected behavior but may not be able to understand where
this behavior comes from or even why it is this way. Engineering
is about sharing knowledge and it is about collaboration. Under-
standing who needs to communicate with whom is a hard prob-
lem. But so is remembering this communication for later change.
Where exactly is this robot behavior implemented in the software
controller? What do we need to change if this robotic behavior
changes? Which engineer is best suited to perform this change.
And, what subsequent changes might the change to the software
controller imply? Without understanding the relations among engi-
neering artifacts involved—e.g., the Matlab computational model
and the software—the engineers performing the changes might not
be able to collaborate effectively. Even worse, the lack of such re-

lations might cause engineers to be unaware of the need for some
collaboration and propagating the change only partially.

Considering frequent artifact changes, the task of keeping arti-
facts consistent and propagating changes completely and correctly
is perhaps the foremost engineering challenge today. The process
is mostly ad-hoc and while standards may require relations to be
captured without automated support they provide little protection
against development artifacts drifting apart. This problem is well
recognized and tied to exploding engineering costs [1] and engi-
neering failures [2].

To address the current lack of support for efficient collabora-
tion among engineers across artifacts and tools, this new idea pa-
per outlines our vision of an engineering infrastructure—the De-
signSpace—that supports the integration of arbitrary engineering
artifacts and provides engineering services for handling artifact evo-
lution and engineer collaboration in an effective and efficient man-
ner.

2. PROBLEM ILLUSTRATED

To illustrate the issue of unmanaged artifact relations, we use an
excerpt of a robot system. The role of a robot is to pick up objects
with a gripper hand and move them to a new position. Figure 1
depicts a small set of engineering tools and a few artifacts that are
involved in the project. Each tool handles a specific kind of artifact.
For example, a mechanical engineer may use a spreadsheet to com-
pute the length of a robot arm based on the distance the robot ought
be able to reach (perhaps taken from the requirements specifica-
tion) and the min/max angles the arm segments are able to rotate
(perhaps stemming from the physical constraints of the arm joints
modeled elsewhere).

None of these engineer tools require another tool to function,
they are separate. However, not separate are the artifacts that en-
gineers create using these tools. There is typically a significant
amount of knowledge shared among engineers. Unfortunately, this
knowledge sharing is typically done in an ad-hoc, implicit manner:
once knowledge is created, it is shared by engineers through in-
formal communication and used to produce development artifacts.
Thus, development knowledge often remains facit and it is only
documented and shared implicitly in form of its manifestation (e.g.,
specific design decisions) in different artifacts. Figure 1 also de-
picts the tacit knowledge sharing in the project. For example, we
see that the arm length computed in the spreadsheet was then prop-
agated to various places. Specifically, see that the CAD drawing
requires the correct arm length to depict the robot. Moreover, the
software controller for the robot requires the arm length to compute
rotation angles needed to correctly position the arm’s servo motors
for grabbing objects.

For this work, it is irrelevant how the knowledge about the “arm
length” was shared (e.g., oral communication through a phone call,
or written communication using email). What is relevant is that dif-
ferent development artifacts in different tools have shared knowl-
edge and inter-dependencies. The tools and their respective arti-
facts remain independent because each tool involved is perfectly
able to model its respective artifacts without knowledge about the
other tools. However, all three tools fail to retain the knowledge
about artifact dependencies. For instance, consider a change of
the maximum reachable “distance” in the requirements specifica-
tion. Except for the requirements specification itself, which ar-
tifacts are affected and how should they be evolved? Unfortu-
nately, there is little to no support for engineers to answer this
question. Typically, engineers need to manually identify the ex-
act spreadsheet that requires updating (there can be a large number
of such sheets). Or, engineers need to manually change the code

because the robot’s grasping “distance” is manifested there as the
“Robot.maxDistance”. And this is not enough. A change in the
robot’s grasping distance may cause subsequent changes such as
possibly a modified arm length. What is affected by that? This
is known as a ripple effect that makes change propagation difficult
because the failure to identify all artifacts that are directly or indi-
rectly affected by a change implies the failure to propagate a change
correctly and/or completely. Note that this example focused on a
trivial, albeit common form of knowledge sharing: the replication
of a value. However, knowledge sharing can be far less trivial by
involving multiple artifacts and complex constraints.

3. DESIGNSPACE VISION

This paper discussed our vision of a collaborative environment,
called the DesignSpace, that lets engineers share knowledge and
record inter-dependencies—even and especially if the shared knowl-
edge or inter-dependencies span across engineering tool bound-
aries. Engineers may continue to work in private (i.e., to explore
ideas that are not yet ready to be shared with others) but they may
also work together in protected groups or even in an publicly vis-
ible manner. Engineers may continue to use their favorite engi-
neering tools as-is and to follow their preferred style of collabo-
ration (e.g., an SVN-like checkout-change-commit workflow with
private working areas) but we want engineers to also be able to
provide knowledge that is currently not (elegantly) expressible in
their tools. This includes the ability to define domain knowledge
(e.g., domain models) or to link dependent artifacts from different
tools and even domains together. Making those artifact relations
explicit not only documents traceability between artifacts, but it
also enables automatic support for checking consistency and react-
ing to changes during the evolution of the system. For any artifact
change, regardless of whether it is visible publicly or performed in
a private working area, information should be provided to engineers
instantly that answers the following three questions: 1) Which ar-
tifacts (i.e., part of the system) are involved in inconsistencies or
are affected by a change? 2) Which engineers are responsible for
the affected artifacts? 3) Which tools can be used to repair these
artifacts and what repair options are there? Furthermore we envi-
sion that the whole evolutionary history will be kept at a quite fine
level of granularity to allow a time-faithful reconstruction of how a
design came about.

4. APPROACH OUTLINE

The DesignSpace is a cloud-based artifact integration and ser-
vice platform that enables effective and efficient collaboration by
explicitly sharing knowledge that is otherwise hidden inside engi-
neering tools. It makes publicly available the development artifacts
and allows arbitrary inter-dependencies to be established—hence
augmenting the knowledge that is already available in development
tools. Moreover, the DesignSpace provides services that enable en-
gineers to work with diverse artifacts, to handle inconsistencies, to
perform transformations, and to collaborate efficiently.

4.1 Data Services

The DesignSpace is "aware" of engineers working syn-
chronously and asynchronously, the engineering tools they are us-
ing, and even the artifacts they are working on. The DesignSpace
thus provides "virtual" access to artifacts in engineering tools. This
key feature allows engineers to use the DesignSpace to define inter-
dependencies among artifacts—even if the artifacts are modeled in
different engineering tools.

public class Gripper

.

public void grab(double angle, double distance) b

if (distance > Robot.maxDistance) throw new Exception();

rotateY(angle);
rotatePhi(sqrt(Math.pow(2*Arm. length, 2)+Math.pow(2*distance. . .

Programming (e.qg., Eclipse) Modeling CAD (e.g., ProEngineer)
. W m | 5] Modeing | | gaDleg, Frofnginee)
File Edit Source Refactor Mavigate Search Project Run Window Help Id /;AN‘\
NrEEEINE-0- A e ey P Bl - Shared Artifacts
. = - File - change impact || File
[NGripperjava 2 7 g - P
- traceability

- consistency
“~~_-transformation T s T

|| File [~~__ File A s lelot
N , Robot Arm Length

| Computation (e.g., Excel)

- EEEE

2 max® 120 degree

}
rotatey(double angle)
{

Requirements
(e.g., Word)

3 min® 60 degree
4 distance 2.8 meter
& length 2.1 meter .

Figure 1: Illustration of some Artifacts and Tools used during the Engineering of a Robot System.

Design Space

Data Services q B .
Optional Syntax/Semantics Engineering Services

HW Modeling N :;;:‘Ti Refactoring &
var\d Simulation Transformation
H
> Computation

Computation Artifacts

A

Consistency
Checker
Requirements

quuiremenls Artifacts,

-——
y Trace-Based
Change
‘ Codey/ Notifier
Programming Artifacts
P Syntax and

Semantics

pPo Pe Bo Do

4 CAD Checker
CAD > Artifacts (Co-Evolution)
Subscription-
Editor & Based Change
Visualization Notifier
(e.g., linking)

Wh‘o did what and hf)w‘(notify the right person)

Figure 2: DesignSpace Data and Engineering Services.

To support both synchronous and asynchronous collaboration
among engineers, the DesignSpace does not actually access arti-
facts in engineering tools but rather the engineering tools are made
to instantly propagate artifact changes to the DesignSpace. The
DesignSpace is thus a mirror of artifacts found in its correspond-
ing engineering tool. To keep artifacts in the engineering tools in
sync with the artifacts in the DesignSpace, artifact- or tool-specific
adapters are necessary. These need to be build separately for each
engineering tool integrated with the DesignSpace. We support two
manners of artifact sharing between engineering tools and the De-
signSpace: i) complete artifact sharing, and ii) selected artifact
sharing limited to artifacts that have been specifically marked by
engineers. We found the latter to be of particular interest to the
engineering community because for many complex calculations or
simulations (e.g., Matlab) only some key parameters need to be
shared with others or linked (e.g., their input and output but not nec-
essarily the computations within). For example, not the entire CAD
drawing in Figure 1 may be of interest to others but key parameters
only such as the length of an arm. The tool adapters ideally sync
artifact changes with the DesignSpace instantly. However, it is also
possible to queue the changes if the engineering tool is used offline.

To represent engineering tool artifacts, the DesignSpace provides
a uniform data structure. Development artifacts are then encoded as
nodes with properties and references to other nodes—analogous to
ontologies or other metamodeling languages, such as EMF/ECORE
(though we will see later that there are in fact strong differences).

For example, once a UML model and code have been synced to the
DesignSpace, linking an UML operation in a class diagram to its
corresponding Java method can be done simply by adding an edge
between the two nodes that reflect the these development artifacts
design model and source code. For this purpose, the DesignSpace
offer an editor/visualization tool called the WorkBench, which engi-
neers may use to access artifacts that otherwise might not be visible
to them (e.g,. a software engineer likely does not use a CAD mod-
eling tool and thus would not be able link code to artifacts from
CAD drawings). The WorkBench provides tool-independent visu-
alization and editing services to let engineers view and manipulate
artifacts at will. This is not only useful for linking artifacts but
also to provide domain-specific extensions that could not easily be
modeled within an engineering tool. For example, engineers can
use this editor to define equality links among the “arm length”-
specific parts of artifacts in the three engineering tools discussed in
Figure 1.

In this context, it is important to note that the DesignSpace does
not "hard code" a specific metamodel/ontology. Rather, they may
vary and metamodels/ontologies can be changed like any other ar-
tifacts. The artifacts in the DesignSpace are weakly typed to their
metamodel artifacts to also support language/domain/metamodel
evolution. Contrary to state-of-the-art, the DesignSpace stores both
the artifacts and their metamodels. And an engineer may evolve
these metamodels at will to support additional engineering knowl-
edge such as links between UML and Java source code.

It is also important to note that the actual integration with the
engineering tool through adapters is application specific and dis-
cussed elsewhere [3]. However, it should be mentioned that most
engineering tools today allow live, programmatic access to its arti-
facts which we exploit to implement that tool-specific adapters. If
an engineering tool does not support live synchronization of devel-
opment artifact changes with the DesignSpace, the synchronization
could also be implemented through periodic parsing of the files it
stores. And it should be note that the level of abstraction and the
granularity used for representing development artifacts in the De-
signSpace can be chosen arbitrarily. For example, a Java class file
can be represented in the DesignSpace at a course granularity by a
single node, or at a fine granularity by mirroring the class’ syntactic
structure.

Figure 2 depicts the DesignSpace in principle. On the left, we
see the engineers and their engineering tools which they use locally
on their work stations. Communication with the DesignSpace is
implemented in a REST-full enterprise architecture and we see that
the DesignSpace’s Data Service mirrors the development artifacts
of the engineering tools. The arrow between the *Requirements’
and ’Code’ artifacts represents a link that has been added by an

engineer using the Editor/Visualizer depicted in the bottom left.
Note that arbitrary complex artifacts may be added in this manner.

4.2 Engineering Services

Figure 2 also depicts an overview of the engineering services
provided by the DesignSpace. For example, recall the equal-
ity links among the “arm length”-specific parts of artifacts in
the three engineering tools discussed in Figure 1. Such equal-
ity links can be defined by engineers using the WorkBench and
such equality links can be automatically checked for correct-
ness/consistency using the Consistency Checker service provided
by the DesignSpace. The consistency checker reacts to any pre-
defined constraints which could be a simple equality constraint or
more complex well-formedness rule across multiple artifacts (we
use the Model/Analyzer consistency checker here because of its
fine-grained, incremental approach to changes and the correspond-
ing scalability [4]). For example, a more complex constraint would
be to keep track of the correct robot’s weight for the control soft-
ware since the weight is an aggregate of many other artifacts mod-
eled in different tools (the weight is needed to correctly control the
servo motor acceleration).

The Subscription-Based Change Notifier (depicted in Figure 2)
informs engineers or tools about changes to artifacts they are inter-
ested in; e.g., the project leader may want to be informed if critical
mechanical changes are made in a CAD drawing as they tend to af-
fect many parts of a system. The Trace-Based Change Notifier, on
the other hand, informs engineers about changes on artifacts that
are linked via a trace link. A trace link is a special kind of link
much like the equality link above. Engineer may use a trace to, say,
keep track of where a requirement is implemented. If the require-
ment changes subsequently then all engineers are notified whose
artifacts were traced to that requirement. Since the DesignSpace
keeps track of who did what and how, it is straightforward to iden-
tify engineers who are affected by a change. Note that the De-
signSpace, by default, does not automatically create links or traces
but helps maintain and reason about them—capturing traces is part
of the design process that is enabled by the DesignSpace. However,
Refactoring and Transformation services may be used to generate
traces or other artifacts automatically. The DesignSpace’s virtual
access to all engineering tools allows refactorings and transforma-
tions to span across tool boundaries. For example, consider that in
Figure 2 we use the term “length” to denote the arm length of a
robot. This term may be ambiguous and a global replacement of
the term “length” with “arm length” would require an coordinated
effort of multiple engineers using multiple tools. Instead, the refac-
toring service on the DesignSpace could do this more elegantly and
the changes are then synchronized back to the engineering tools.
Automatic, bi-directional synchronization is supported with most
integrated engineering tools. However, we believe that engineers
should be asked for permission prior to performing automatic syn-
chronization of artifacts in tools.

Finally, the DesignSpace provides a Syntax and Semantics
Checker for Co-Evolution. Co-evolution ensures the conformance
of artifacts to their language (e.g., metamodel) after language evo-
lution. Most engineering tools already enforce their own language
and this service is thus only needed if the engineers wish to diverge
from a tool’s language or, more significantly, if they find it useful
to define a domain-specific model (perhaps one that spans across
artifacts from multiple tools). In case of the robot example, such
a domain model exists, describing the main components of a robot
(not depicted in the figure due to brevity). This service then ensures
that changes of this model do not break the model’s conformance
with the desired language (e.g., well-formedness), thus avoiding er-

Design Space

Workspace Versions
(Private) (Public)

‘ checkout/gommit/update Code
Program‘change . A Artifacts
Computation
» Artifacts

Computation

Artifacts

Computation checkout/gommit/update.
- change
»

checkout/commit/update,
change

version history

Computation

20 D020

file needed if
artifacts knowledge c file knowledge

Figure 3: DesignSpace Collaboration Overview.

rors being introduced. This conformance checker is also useful for
additional knowledge added by engineers. For example, equality
links are only then well-formed if they link two same-typed artifact
properties. It would be invalid to, say, link a natural number with a
Boolean.

4.3 Collaboration Services

Collaboration is an integral part of the DesignSpace. In a cloud-
based engineering environment, however, the preferred style of col-
laboration may vary significantly depending on project specifics
such as project complexity, development process, team size, or per-
sonal preference—the preferred style may even change during a
single project. For example, engineers may prefer to collaborate
closely by following a blackboard-style approach in which all arti-
facts are shared and kept in a public, version controlled space that
is accessible to all (with the proper access rights), similar to Google
Docs. But engineers may also choose to not share certain artifacts
(temporarily) which are then kept in private work spaces, similar
to SVN where private changes are not publicly visible until they
are committed. To support any kind of collaboration, in the De-
signSpace there is thus one public work space and potentially many
private work spaces. For any change that is about to be made, en-
gineers can decide flexibly and on demand whether they prefer to
work in the public or a private work space.

The DesignSpace approach supports versioning at the finest-most
level of granularity: each node and each edge is versioned sep-
arately. This makes the version control mechanism of the De-
signSpace quite simple and efficient. If, for example, the name
of a method in a Java class is changed then committing the change
leads to a new version of the class name in the DesignSpace. This
fine-grained versioning is also resulted by the desire to support fine-
grained change notifications and change propagation as discussed
above.

As depicted in Figure 3, the DesignSpace does not only provide
publicly visible versions but also private work spaces (versions not
committed yet, representing an engineers ongoing work). The pri-
vate work spaces reflect the current, ongoing look at what engi-
neers are doing. There is exactly one work space for every engi-
neer and the tool that is used. Reflecting both public and private
knowledge, the DesignSpace can provide unified and integrated
engineering services across all artifacts; e.g., to inform an engi-
neer about inconsistencies the private changes would cause prior to
committing them. This is particularly interesting for cross-artifact,
and thus often cross-tool, inconsistencies which would not be de-
tectable within one’s own tool. Consider, for example, that the me-
chanical engineer makes changes which lead to a new arm length.
In a SVN style approach, such a change would remain invisible

to the software engineer, even after the change was committed (i.e.,
because the software engineer would be unaware of this change un-
til he/she chooses to update). This may not be useful. To avoid this,
the DesignSpace can allow the consistency checker to work on the
latest public knowledge, which means that the software engineer
would be instantly notified as soon as the mechanical engineer com-
mits the change. Indeed, the DesignSpace also allows for changes
to become visible to others even before committing them into the
public work space. This is realized via work space groups (arbitrary
and even overlapping combinations of private work spaces) which
represent a kind of joint, but still protected, work space in which a
group of engineers can work together and see their work prior to it
becoming public knowledge. If the mechanical engineer and soft-
ware engineer where to form such a group, the software engineer
would be notified of the arm length inconsistency at the moment
the mechanical engineer makes the change, even if the change is
not publicly visible. Different modes for such work space groups
are conceivable, from sharing all the knowledge between private
work spaces to more restricted forms, which will be part of our
future work.

S. PROTOTYPE IMPLEMENTATION

To date, the core data and engineering services of the DesignSpace
have been implemented.! These services include: i) data storage
mechanisms that allows for cloud-based mirroring of arbitrary de-
velopment artifacts, ii) versioning of artifacts (with conflict detec-
tion and support for various types of collaboration), iii) traceabil-
ity, iv) consistency checking, v) subscription-based change notifi-
cation for artifact changes, vi) trace-based change notification for
artifact changes, and vii) an editor with basic visualization capabil-
ities. Moreover, adapters and plug-ins are available for various en-
gineering tools to synchronize their artifacts automatically with the
DesignSpace. Currently, the following tools are already supported:
ProEngineer, IBM Rational Software Architect, and Microsoft Ex-
cel.

6. APPLICATION AND VALIDATION

The DesignSpace is an ongoing project. However, it is al-
ready being applied within the software engineering domain and
the mechatronics domain.

6.1 EPlan

For this application of the DesignSpace, the tool EPLAN Elec-
tric P8 for the development of of electrical models and the well-
known Eclipse IDE for source code development were integrated
with the DesignSpace though the means of tool adapters. Trace-
ability between EPlan models and source code were established by
engineers using the DesignSpace’s own editor tool. Consistency
between the electrical model and source code was checked based
on a set of user-defined, domain-specific rules.

6.2 ACCM Robot Arm

The DesignSpace has also been used in the mechatronics domain
as a platform for designing a robot arm. The project involved var-
ious kinds of artifacts. For example, mechanical calculations were
provided in the form of multiple Excel spreadsheets. UML models
of the robot arm were built with the IBM Rational Software Archi-
tect. Moreover, there were 3D models of the robot arm built with
CAD tools as well as simulation models built with Matlab. All arti-
facts were represented in the DesignSpace and traceability between

1Prototype available at isse.jku.at/tools/dsspc/xadr.zip
(pw: dsisse).

the artifacts was established. The DesignSpace’s data services were
used to check consistency among artifacts and to notify engineers
about relevant artifact changes.

6.3 ACCM Visualization Experiment

In the third major application, the DesignSpace was used as in-
frastructure in a controlled experiment with students. Different
development artifacts (requirements, mechatronic design models)
were stored in the DesignSpace and traces between those artifacts
were established by domain experts. Students were then asked to
perform defined refactorings, using different visualizations of the
artifacts and the traceability (i.e., a matrix and a graph). To per-
form the refactoring, students used the DesignSpace’s viewer and
editor tool. Even though the focus of this experiment was to eval-
uate different visualization approaches, the DesignSpace provided
essential functionality for linking distinct development artifacts and
providing the data to be visualized.

6.4 Summary

The presented case studies demonstrate the general applicabil-
ity and also the usability of the DesignSpace. Preliminary perfor-
mance evaluations also indicate that it scales well with increasing
numbers of mirrored artifacts. Incremental feedback about, e.g.,
version conflicts or change impact can be retrieved within millisec-
onds.

7. RELATED WORK

The DesignSpace provides a flexible engineering environment
for efficient artifact and knowledge sharing. Indeed, there exist
various tools and approaches that already provide parts of the De-
signSpace’s functionality such as artifact linking or versioning. For
example, IBM RELM [5] allows arbitrary development artifacts to
be stored, linked, and queried for reasoning. GME [6] supports the
definition and subsequent use of languages and metamodels. Sub-
version [7] or Git [8] allow for different kinds of checkout-change-
commit workflows with private working areas whereas Google
Docs allows for blackboard-style, live collaboration. However,
there is little compatibility between these tools and approaches—
once a tool or approach has been chosen to be used in a project,
the style of collaboration and the kinds of artifacts are determined.
Later changes are costly and require much effort. The DesignSpace
is a novel engineering environment that supports the combined set
of workflows and kinds artifacts supported by the diverse existing
tools and approaches—the actual workflow and artifacts to work
with can be changed at all times without the need for changing em-
ployed technologies or tools.

Part of the vision of the DesignSpace is to allow the user to
model an arbitrary number of domain models and models con-
forming to them, which in turn might also represent domain mod-
els (multi-level metamodeling). There exist various approaches
that address this issue and furthermore also metamodel and model
co-evolution—as models might no longer conform to metamodels
if the metamodel changed — (e.g., [9, 10, 11]). Yet, all of them
face some restrictions e.g., GME [11] uses a sophisticated, yet
fixed, set of concepts to describe metamodels, which could lead
to restrictions. Furthermore, constraints defined on metamodel el-
ements must also co-evolve after metamodel changes (e.g., [12]).
The DesignSpace keeps models and metamodels separate—even if
the metamodel changes, the engineer is not required to update the
model — indeed it may still be consistent with the older version of
the metamodel.

Another approach to modeling are ontologies (e.g. RDF), which
are used to represent domain knowledge in Semantic Web, knowl-

edge management systems or E-commerce. Those ontologies are
typically developed and controlled in a distributed and collabo-
rative fashion (e.g., OntoEdit [13]). Several works have been
conducted on reasoning [14], versioning [15] or comparing ver-
sions [16] of ontologies. Nevertheless, a constructed ontology only
provides syntactical consistency, its contents still can be semanti-
cally inconsistent. Evolution and traceability, even though there
exist implementations providing both, are not innately supported.
Therefore, the ontologies reach the same level of sophistication in
(meta)modeling as the DesignSpace wants to support but lacks in
other ways such as collaboration.

Neither of the previous mentioned work fully addresses the col-
laboration. Typically collaboration in software development—
especially for source code—is often centered on sharing files which
are organized by version-control systems like Subversion [7] or
Git [8]. Versioning systems enable distributed collaboration on
files, more fine grained control about what information to share
with others is not possible. Likewise it is not (easily) possible to
link artifacts from different files or provide the kinds of engineer-
ing services we suggested. Only file-based evolution and simple
file-based traceability are supported. The DesignSpace contribu-
tion here is a finer grained handling of those files with the benefit
that its services are now able to mirror those of engineering tools
and beyond—enabling a cross-tool engineering infrastructure that
is being used live.

A similar approach in tool integration is the Open Services for
Lifecycle Collaboration (OSLC) [17]. The OSLC is a set of specifi-
cations to allow to integrate development lifecycle tools. Based on
a core specification, domain specific specifications (e.g., configura-
tion management, quality management, requirements management
and architecture management) are built on top. The core specifi-
cation only consists of standard rules for usage of HTTP and RDF
and is not designated to be used on its own. OSLC integrates tools
based on RDF and HTTP, allows tracing among RDF resources,
modeling as so called resource shapes and not only data integration
but also user interface integration of different tools. However, it
does not provide versioning of artifacts, co-evolution of metamod-
els, the metamodeling activity itself or consistency in the face of
artifact evolution.

The DesignSpace also relates to many other works on consis-
tency checking, traceability, etc. However, since it does not further
their respective states of the art (e.g., the DesignSpace consistency
checker is a state-of-the-art checker), these are not discussed here.
Also note that the DesignSpace does not automate the linking of
artifacts (traces, equality links, etc.). Engineers are expected to de-
fine those manually using the infrastructure it provides. Existing
state of the art suggests that there are ways of (partially) automat-
ing links (e.g., traceability in particular). This was not investigated
thus far but is the spirit of the DesignSpace and could be integrated.

8. CONCLUSIONS AND FUTURE WORK

The DesignSpace’s vision is to cover the various dimensions of
engineering—collaboration, (meta)modeling, consistency, trace-
ability and evolution—Dby integrating and publishing artifacts and
providing additional services. The DesignSpace allows to verify
the consistency of artifacts, trace artifacts to one another, transform
artifacts, enable (meta)modeling in arbitrary levels of abstraction,
and record the engineering history at the finest level of granular-
ity. Future work will be to finish the implementation of our work-
ing prototype, substantiate collaboration forms realized through
workspace groups, and derive further case studies to verify our ap-
proach.

Acknowledgments

The work was kindly supported by the Austrian Science Fund
(FWF): P23115-N23, P25513-N15, and P25289-N15, and the Aus-
trian Center of Competence in Mechatronics (ACCM): Strategic
Research Grant C210101.

9. REFERENCES

[1] B. W. Boehm, “Software engineering economics,” I[EEE
Trans. Software Eng., vol. 10, no. 1, pp. 4-21, 1984.

[2] S. Group et al., “Extreme chaos,” The Standish Group
International Inc. http://www. standishgroup. com/chaos.
html, pp. 1-12, 2001.

[3] D.S. Wile, R. Balzer, N. M. Goldman, M. Tallis, A. Egyed,
and T. Hollebeek, “Adapting cots products,” in /ICSM, 2010,
pp- 1-9.

[4] A.Reder and A. Egyed, “Model/analyzer: a tool for
detecting, visualizing and fixing design errors in UML,” in
ASE, 2010, pp. 347-348.

[5] IBM. Rational Engineering Lifecycle Manager. http://www-

03.ibm.com/software/products/en/ratiengilifemana.

A. Lédeczi, A. Bakay, M. Maroti, P. Vélgyesi, G. Nordstrom,

J. Sprinkle, and G. Karsai, “Composing domain-specific

design environments,” IEEE Computer, vol. 34, no. 11, pp.

44-51,2001.

[7] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato,
Version control with subversion - next generation open
source version control. O’Reilly, 2004.

[8] J. Loeliger, Version Control with Git - Powerful techniques
for centralized and distributed project management.
O’Reilly, 20009.

[9] S. Fickas, M. Feather, and J. Kramer, “ICSE-97 Workshop
on Living with Inconsistency, Boston, USA,” in ICSE, 1997.

[10] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. C. Polack,
“Model Migration with Epsilon Flock,” in ICMT, 2010, pp.
184-198.

[11] J. Davis, “GME: the generic modeling environment,” in
OOPSLA Companion, 2003, pp. 82-83.

[12] A. Demuth, R. E. Lopez-Herrejon, and A. Egyed,
“Cross-layer modeler: a tool for flexible multilevel modeling
with consistency checking,” in SIGSOFT FSE, 2011, pp.
452-455.

[13] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and
D. Wenke, “OntoEdit: Collaborative Ontology Development
for the Semantic Web,” in International Semantic Web
Conference, 2002, pp. 221-235.

[14] X. Wang, D. Zhang, T. Gu, and H. K. Pung, “Ontology
Based Context Modeling and Reasoning using OWL,” in
PerCom Workshops, 2004, pp. 18-22.

[15] D.-H. Im, S.-W. Lee, and H.-J. Kim, “A Version
Management Framework for RDF Triple Stores,”
International Journal of Software Engineering and
Knowledge Engineering, vol. 22, no. 1, pp. 85-106, 2012.

[16] N.F. Noy and M. A. Musen, “PROMPTDIFF: A Fixed-Point
Algorithm for Comparing Ontology Versions,” in AAAI/IAAI
2002, pp. 744-750.

[17] Open Services for Lifecycle Collaboration
http://open-services.net/, Std.

[6

—_

